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Recently, several works have explored if and how robotic coaches can promote and maintain mental well-being
in different settings. However, findings from these studies revealed that these robotic coaches are not ready to
be used and deployed in real-world settings due to several limitations that span from technological challenges
to coaching success. To overcome these challenges, this paper presents VITA, a novel multi-modal LLM-based
system that allows robotic coaches to autonomously adapt to the coachee’s multi-modal behaviours (facial
valence and speech duration) and deliver coaching exercises in order to promote mental well-being in adults.
We identified five objectives that correspond to the challenges in the recent literature, and we show how the
VITA system addresses these via experimental validations that include one in-lab pilot study (𝑁 = 4) that
enabled us to test different robotic coach configurations (pre-scripted, generic, and adaptive models) and
inform its design for using it in the real world, and one real-world study (𝑁 = 17) conducted in a workplace
over 4 weeks. Our results show that: (i) coachees perceived the VITA adaptive and generic configurations
more positively than the pre-scripted one, and they felt understood and heard by the adaptive robotic coach,
(ii) the VITA adaptive robotic coach kept learning successfully by personalising to each coachee over time and
did not detect any interaction ruptures during the coaching, (iii) coachees had significant mental well-being
improvements via the VITA-based robotic coach practice. The code for the VITA system is openly available
via https://github.com/Cambridge-AFAR/VITA-system.

CCS Concepts: • Human-centered computing → Empirical studies in HCI ; HCI theory, concepts and
models.

Additional Key Words and Phrases: mental well-being, robotic coach, open-source system, reinforcement
learning, adaptation, autonomous, human-robot interaction

1 INTRODUCTION
Mental health and well-being promotion and maintenance have been paramount goals for theWorld
Health Organization (WHO)1 in the last decade, given the increase of mental health conditions
worldwide. Despite the rise of mental healthcare needs, the treatment coverage remains extremely
low leading to a call for innovative mental healthcare solutions. To address the limited access
to healthcare systems, several works [32, 38, 61] have recently investigated if and how robotic
coaches can be used to promote mental well-being in different contexts, e.g., workplace [57], student
accommodations [30] etc. These studies show that the robotic technologies have the potential of
providing a dedicated space and time for a coaching session that smartphone-based apps cannot[6].
Findings from these studies revealed that robotic coaches are still very far from being used and
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Limitations of past works (L) Objectives of this work (O) Experimental validation (EV)

(L1) Coachees reported negative per-
ception and feedback about the robotic
coach because they found it not inter-
active nor responsive [59] or "glitchy"
[32].

(O1) Making the robotic coach more
interactive and responsive to im-
prove coachees’ perception towards
the robotic coach

NARS questionnaire and GEQ results
of the pilot study (see Section 4,EV1.1)
and the real-world study (see Section
5.5.2, EV1.2), and coachees’s inter-
view comments on the perception of
the robotic coach (see Section 5.5.3,
EV1.3)

(L2) The robotic coach practice was
not personalised longitudinally, in con-
trast to recommendations of [7] and
[32] and coachees expected it to "adapt
and personalise more" [57].

(O2) Implementing and evaluating an
adaptive robotic coach to better match
with the coachee’s behaviour over
time

Reward increasing over time in the pi-
lot study (see Figure 6, EV2.1) and in
the real-world study (see Figure 7 and
Section 5.5.1, EV2.2), coachees’ per-
ception of adaptation (see Section 5.5),
their overall impression (see Table 4,
EV2.3) and coachees’s interview com-
ments on the perception of the robotic
coach (see Section 5.5.3, EV2.4)

(L3) Coachees experienced several
interaction ruptures during robotic
coaching [59] that can negatively af-
fect the coach-coachee alliance.

(O3) Recognising the occurrences of
interaction ruptures via automatic de-
tection during robotic coaching to
guarantee the success of the practice

Interaction ruptures detected in the
real-world study (see Section 5.5.2,
EV3.1), and coachees’s interview com-
ments on the flow of the coaching
practice (see Section 5.5.3, EV3.2)

(L4) Coachees found the conversa-
tional capabilities of the robotic coach
were limited, as in [30, 57], and they
did not feel understood or listened to.

(O4) Embedding the robot with the
advance large language model (LLM)
module to imitate human coach be-
haviours

Coachees’s interview comments
on conversational capabilities of
the robotic coach (see Section 5.5.3,
EV4.1)

(L5) Coachees’ mental well-being did
not significantly improve via robotic
coaching in the long term [57].

(O5) Significant improvement in the
coachees’ mental well-being to demon-
strate the success of the robotic coach-
ing

Significant RPWS scale results in the
real-world study (see Figure 7 and
Section 5.5.2, EV5.1), and coachees’s
interview comments on the benefits
of the coaching practice (see Section
5.5.3, EV5.2)

Table 1. Limitations of past works (L), Objectives to address those limitations (O), and Experimental Validation
of the VITA system designed to achieve those objectives (EV).

deployed in the real world as fully autonomous coaching agents for long term use due to several
limitations that span from the technological challenges to the success of the practice.

Overall, findings in [30, 57] showed that coachees expect from the robotic coaches more than they
can currently deliver. The coachees complained about the lack of interactivity and responsiveness
of the robotic coach [6, 57], or the lags in robot response and behaviour, and various glitches [32]
(Limitation 1, L1). Findings from past works also showed that coachees expected the robotic
coach to "adapt and personalise more" [57]. However, none of the past works have explored the
use of personalised and adaptive robotic coaching deploying it in the long term despite the recom-
mendations distilled by [7] and [32] (L2). Additionally, coachees experienced several interaction
ruptures (i.e., coachees felt awkward and/or the robot was making a mistake, e.g., interrupting the
coachees [59]) that may have also jeopardized the coach-coachee alliance, another important factor
for the success of the coaching practice [15] (L3). Coachees also highlighted the importance of
the conversational capabilities of the robotic coaches. They reported that the dialogue with the
robot was very limited [32] and that they did not feel understood or heard [57] (L4). Past works
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have demonstrated the efficacy of robotic coaching (i.e., leading to an improvement of coachees’
mental well-being) when delivering coaching exercises in short-term interactions (e.g., after 7-days
interaction [30]). The very few papers [9, 57] that explored their efficacy in the long term did not
find any significant improvements in the coachees’ mental well-being (L5). The factors that could
have negatively influenced the success of the practice may be multiple, including the technical
limitations of the robots highlighted above.
In this paper, we present VITA (“life” in latin), a novel multi-modal LLM-based system for

adaptive mental well-being coaching that allows a robotic coach to autonomously adapt to each
coachee and deliver coaching exercises to promote mental well-being in adults by addressing
the above-mentioned limitations as reported in Table 1. The main objectives of this work are
the following. First, we design and develop the robotic coach to be interactive (i.e., multi-modal
two-way interaction between the coach and the coachee) and responsive (i.e., the robotic coach
can respond to the coachee by analysing both the coachees’ verbal and non-verbal behaviours) and
we evaluate the coachees’ perceptions towards the robotic coach (Objective 1, O1 addressing L1).
Second, we develop and implement an adaptive and personalised model to manage the dialogue
flow of the coaching practice and evaluate its advantages by comparing it with a non-adaptive
model (O2 addressing L2).
Then, we implement an automatic model based on machine learning to recognise interaction

ruptures during the interaction with the robotic coach, and we embed it into the robotic coaching
system to evaluate whether ruptures occur during the coaching practice (O3 addressing L3). We
chose to analyse interaction ruptures specifically, as we examined these in our previous work
addressing barriers to robotic well-being coaching [59]. Within robotic well-being coaching, and
in consultation with a human coach / therapist, interaction ruptures were defined as instances
of a user expressing awkwardness, and/or the robot making a mistake in coaching [59]. The
relationship between the coach and coachee is important to coaching success [15], and difficulties
in this relationship can pose barriers to successful coaching [11]. Such difficulties include the
coachee not feeling supported by the coach, or the coach not being involved, sensitive or flexible
during coaching [11]. Such awkward coaching interactions may make a user feel embarrassed,
nervous or self-conscious [34], posing a barrier to coaching. As such, both robot mistakes and user
awkwardness are important barriers to well-being coaching [59], contrary to research of robots in
other contexts, which focuses on only the mistakes or communication failures of the robot (e.g.,
[26]).

We then leverage the advancements in large languagemodels (LLMs) and embed a ChatGPT-based
conversational module using prompt engineering into the robotic coach system to deliver positive
psychology exercises (O4 addressing L4). Finally, we evaluate if coachees who interacted in the
long-term with a fully autonomous and adaptive robotic coach reported significant improvements
in their mental well-being (Objective 5, O5 addressing L5).

To simultaneously address all these objectives in a single work, we conducted various evaluations
by undertaking a pilot in-lab study – that involved 4 participants – to evaluate the differences
between pre-scripted (i.e., the robotic coach follows a pre-defined sequence of utterances to speak
aloud to the coachee nomatter what the coachee says), generic (i.e., the robotic coach understands via
natural language processing what the coachee says and responds accordingly without personalising
the selection of the next line of the dialogue to coachee’s behaviour), and adaptive (i.e., the robotic
coach understands via natural language processing what the coachee says and personalises to
the coachee’s behaviour by selecting the next line of the dialogue flow accordingly) models. This
initial study informed us that the adaptive model led to a more personalised interaction than the
pre-scripted and generic models. Based on this finding we embedded the robotic coach system
with the adaptive model to manage the dialogue flow during the coaching practice delivered by
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the robot. We deployed our implementation in a long-term real-world study – that involved 17
participants at a tech company – to evaluate the capabilities of the VITA-based robotic well-being
coaching.
The main contributions of this paper are two-fold. First, we provide the community with a

novel and open-source system named VITA to design and develop an autonomous and adaptive
robotic coach that can deliver mental well-being practices by adapting to each coachee. Our second
contribution is the evaluation of the VITA-based robotic coach via pilot and long-term real-world
studies to successfully deliver mental well-being coaching practices. Specifically, we found that (i)
coachees perceived the adaptive and generic configurations more positively than the pre-scripted
one, and they felt understood and heard by the robotic coach, (ii) the adaptive robotic coach kept
learning successfully by personalising to each coachee over time and did not detect any interaction
ruptures during the coaching practice, and (iii) coachees reported significant mental well-being
improvements via the robotic coach practice.

2 RELATEDWORK
2.1 Robotic coaches for mental well-being
Coaching is a practice focused on promoting the well-being of mentally healthy people, for instance
to aid them in reaching new levels of achievement and success in their professional or personal life.
Coaching does not aim to address or treat mental illness, contrary to psychological therapy [24]. The
goals of coaching might include improving the coachee’s ambition, morale, or overall well-being
[21]. Techniques differ across types of coaching. For instance, Positive Psychology aims to aid
the coachee to focus on the positive experiences and sensations in their life [52], while Cognitive
Behavioural Coaching focuses on the relationship between a coachee’s thoughts, emotions and
behaviour [21]. The success of coaching depends on the relationship between the coach and the
coachee, relying on factors such as mutual understanding and trust [15], as well as transparency
in the coaching relationship [23]. Previously, the quality of therapeutic relationships has been
examined through the alliance between the therapist and client (here, analogous to coach and
coachee). Alliance has been investigated through the bond between the therapist and client, as well
as how the goals of the therapeutic process are met [41].

Robots are promising tools for well-being coaching due to their advantages over other technolog-
ical tools, such as mobile applications. Additionally, past research exploring robots for mindfulness
meditation found that robots provide the benefit of creating a dedicated time and space for well-
being practice [6], which using a mobile application for the same purpose would not. In a past
study exploring robotic coaches for positive psychology exercises at a workplace, participants
remarked that the robot acted as a visual reminder of the well-being practice they had practiced
with it earlier [57]. In another study, participants were found to self-disclose more and attain more
emotional benefits from a journal writing exercise with a robot, in comparison to a voice agent
[51]. In comparison to human coaching, while robots can not perform at a human level, robots can
be more accessible and available [5]. In the case of our study, having a shared robot at a workplace
could provide low-barrier access to well-being coaching for employees.

Just a handful of papers have researched the use of robotic coaches to foster mental well-being,
e.g., [1, 6, 9, 32, 38, 53, 57, 61]. Jeong et al. [30] conducted a longitudinal study which utilized Jibo
robots to provide positive psychology interventions to students in home settings over a period
of seven days, and reported that participants experienced a better sense of well-being, improved
mood and a readiness to change, while gradually developing an affinity for the robot. Shi et al. [53]
investigated the effect of physical embodiment and personalisation on the user-perceived quality of
text-to-speech (TTS) voices for mindfulness. Their results showed that the user-personalized TTS
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voices were able to perform nearly as well as human voices, indicating that user personalisation
could be a powerful approach to raise user perception of TTS voice quality. Spitale et al. [57, 59]
conducted a study involving employees of a tech company to interact with two different forms of
robotic coaches that delivered positive psychology exercises over 4 weeks. Their results showed
that the robot form may impact the perception of the coachees towards the robotic coach. Jeong
et al. [31] explored the companion-like robotic coach behaviour during well-being therapy by
comparing the assistant, coach, and companion roles of the robot. Their results showed that the
companion robot was the most effective in building a positive therapeutic alliance with its users.

2.2 HRI tools and systems
There are notable efforts within the HRI community to create tools for composing social human-
robot interactions [20, 47, 55], including robot specific tools, (e.g., Choreograph [46]), content
authoring tools (e.g., [14]), and dialogue management tools (e.g., [28]). These tools are not multi-
modal, open-source, robot-agnostic, composable, and modular – crucial factors for adoption and
wide usage by the HRI community [60]. One representative example that addresses the aforemen-
tioned open issues is HARMONI [60] – an open-source, robotic-agnostic, modular and multi-modal
tool to help researchers compose social human-robot interactions. Such tools are extremely benefi-
cial when maintained and supported by the HRI community as they enable researchers to quickly
implement a new interaction or deploy a new robot for a research study without wasting time to
reinvent the wheel.

Such tools are usually implemented for generic use. On the contrary, robotic systems (e.g., [44])
refer to the development and, if applied, the use of the above-mentioned tools, to specific application
scenarios, such that they "synthesise underlying techniques to achieve system-level HRI behavior"
2. To this aim, Taylor and Riek [64] presented the Robot-Centric Group Detection and Tracking
System (REGROUP) as a new system that enables robots to detect and track groups of using a
crowd-aware, tracking by-detection approach that has been made publicly available. Analogously,
Nanavati et al. [42] introduced a novel system that relies on informed direction selection to avoid
obstacles and traverse an hallway, and periodic human help to charge, evaluating it in the wild and
shared their code open source. However, none of the existing robotic systems have focussed on
robotic well-being coaching. This paper presents a novel adaptive robotic system named VITA that
leverages the HARMONI tool to promote code re-use and advances the current HRI state of the art
by enabling the autonomous delivery of well-being practices.

2.3 Adaptation and personalization in HRI
Within the HRI literature, very recently a number of works, e.g., [4, 13, 19, 40], have started to
investigate and evaluate the use of adaptive and personalised robots by showing that adaptive
configurations are very promising for robotic applications [49]. For example, Axelsson and Skantze
[4] presented a fully automated system for building adaptive presentations for embodied agents.
They evaluated the system involving 43 participants who interacted with the adaptive system, and
their results demonstrated that the user preferred the adaptive system. Analogously, Gillet et al.
[19] explored how learning robot gaze behaviors (via reinforcement learning) can balance human
participation in conversational interactions. Their results showed that the proposed reward for the
reinforcement learning approach enabled the robot to encourage participants to take more turns.
Only a few works have explored the applications of adaptation and personalisation in robots in
the context of mental well-being. Churamani et al. [13] proposed a novel system for well-being
coaching by utilising continual learning to personalise the robotic coaching to each user, and

2https://humanrobotinteraction.org/2024/fullpaper/
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Fig. 1. The components of the VITA system for adaptive robotic mental well-being coaching.

compared static, adaptive, and personalised versions of the robotic coach. Their results showed
that overall the users tend to prefer the robotic coach with continual personalisation.

However, none of the previous works have created long-term autonomous adaptation and/or
personalisation strategies for robotic mental well-being coaching.

3 VITA SYSTEM
This section introduces the VITA system providing a general overview and a detailed description
of the main components embedded in the robotic coach that have been used and tested during the
pilot and real-world studies to address the objectives listed in Table 1.

3.1 Overview
VITA is based on a behaviour tree structure which runs at a frequency of 10Hz and is managing all
the VITA components from a high level. The behaviour tree, inspired from Spitale et al. [60] – in
which the authors presented a very simple pre-scripted dialogue-based flow – coordinates reading
the data from the sensors (microphone and camera of the robot), running the detectors continuously
(e.g., facial expression, interaction ruptures etc.), calling external services (e.g., OpenAI API for
natural language processing), and activating the actuators (e.g., speaker and motors of the robot)
when a decision about the dialogue flow is made.

A walk-through of the interaction is depicted in Figure 1 and described as follows. To begin, the
sensors (microphone and camera) and the detectors (openSMILE, OpenFace, facial expression, voice
activity, and interaction ruptures) are activated. The dialogue flow manager initiates the interaction,
and the robot introduces the positive psychology exercise and asks the first question. Then, the
coachee is required to answer the questions posed by the robotic coach and the detectors analyse
the raw audio and video data published by the microphone and the camera of the robot. After that,
the detectors send their outputs to the dialogue flow manager which decides, on the basis of the
multi-modal behavioural data collected from the detectors, which dialogue action to take next in
the coaching practice and sends the corresponding prompt to the ChatGPT engine. This produces
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its textual response and sends it to the actuators that synthesise the text and generate the robotic
coach behaviour (i.e., sound, facial lip-sync and gesture).

Fig. 2. Architecture of the HARMONI modules integrated in the robotic coach system.

3.2 VITA Modules
We designed the robotic coach system architecture by including sensor, detector, actuator, dialogue
and decision modules using the open-source framework HARMONI [60]. Figure 2 represents the
modules integrated in the robotic coach via the HARMONI framework. We describe each of these
modules in the following sections.

3.2.1 Detector modules. Besides relying on the robot’s sensors (microphone and camera), we
embedded in the robot the following detector modules to perceive the environment and the
behavioral cues of the coachee.

• Voice activity detector: we used the VAD library3 to detect when the coachee is speaking
using the microphone input;

• Facial Action Unit (AU) detector: we integrated the OpenFace4 library for real-time detection
of facial action unit features;

• Speech feature detector: we integrated openSMILE5 library for real-time extraction of speech
features, e.g., pitch;

• Facial expression recognition detector: we integrated the FaceChannel library6 to extract
the valence and arousal from coachees’ facial gestures;

• Interaction rupture detector: we embedded the interaction rupture detector (described in
Section 3.3);

• Speech to text module: we used the Google Speech-to-text API7 to transcribe the speech of
the coachees.

3https://github.com/marsbroshok/VAD-python
4https://github.com/TadasBaltrusaitis/OpenFace
5https://www.audeering.com/research/opensmile/
6https://github.com/pablovin/FaceChannel
7https://cloud.google.com/speech-to-text
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3.2.2 Actuator modules. Besides the wrapper for the robot motor, we embedded the robot with
actuators to make the interaction more natural:.

• Facial expression actuator: we used the CordialFace[54] to control the facial expressions of
the robot and display the lip-sync on the face-screen;

• Text-to-speech actuator: we used Amazon Polly Text-to-speech API8 to synthesize the
speech of the robot. We picked Amy voice as in [57].

3.2.3 Dialogue modules. We implemented the following dialogue modules:
• Natural language processing module: we used chatGPT to analyse the coachees’ responses
by integrating the OpenAI API9 in the robotic system;

• ADAPT-RL: we integrated the trained Adapt-RL model reported in Section 3.2 to make
sequential decisions on which action to take next for delivering the positive psychology
exercises.

3.2.4 Decision manager module. We implemented an high-level decision module as a behavior tree
by using the py-tree library10 to manage the whole interaction.

3.3 Dialogue Flow of Adaptive Coaching
In previous studies [6, 57], participants noted that the robotic coach was not interactive and
responsive enough due to the pre-scripted nature of the interaction (L1). Also, coachees revealed
that they would expect the robotic coach to adapt and personalise more (L2). VITA attempts to
overcome these limitations by providing a system that enables fully autonomous and adaptive
robotic coaching to improve the perceptions of the coachees towards the robotic coach (O1) and
emulate the behaviour of a human coach (O2). To this end, a robotic coach needs to be trained
with human coach data. Hence, we collected a dataset of human-human dyadic interactions during
positive psychology practices as existing literature lacks such a dataset.

3.3.1 HHI4PP Dataset. We collected a dataset of human-human dyadic interactions between a
humanwell-being coach and five participants (coachees), namedHuman-Human dyadic Interactions
For Positive Psychology practice (HHI4PP). The coachees were 3 females and 2 males 29-33 years old
(M=30.6 y.o., SD= 2.19 y.o.) who work as researchers at the Affective Intelligence and Robotics Lab,
University of Cambridge. The human well-being coach delivered four different positive psychology
exercises (about 15 minutes each). The exercises were the same as in our previous works [57]
and [59]. The exercises were: 1) savouring, where a participant is asked to recall and reflect on
a positive memory in the recent past [56]; 2) gratitude, where a participant is asked to recall
instances where they felt grateful [22]; and 3) accomplishments, where a participant is asked
to think of recent accomplishments and the positive qualities in themselves that helped them
accomplish them [22]. The fourth exercise used in previous work (i.e., optimism about the future)
was substituted with the one door closes, one door opens exercise. In this exercise, a participant
is asked to think about instances where they missed out on an opportunity (i.e., a door closed), and
what opportunities arose as a result (i.e., a door opened) [33]. This exercise focuses on cultivating
optimism about the future. We substituted the exercise used in past studies because participants in
our previous work [57] found the previous exercise particularly difficult (as reported in [59]).
The audio-visual recordings of the sessions were done via MS Teams, and we transcribed the

speech using the automatic MS Teams transcriber. Our dataset includes a total of 5.5 hours of
video recordings with the corresponding transcriptions of coach-coachee dyadic interactions. The
8https://aws.amazon.com/polly/
9https://platform.openai.com/
10https://py-trees.readthedocs.io/en/devel/



VITA system 1:9

ethics committee of the University of Cambridge approved the collection of this dataset and the
participants signed an informed consent before taking part in this study.

3.3.2 Reinforcement Learning Problem Formulation. From the HHI4PP dataset, we observed (by
sorting through the videos and labelling the actions) that the human well-being coach adopted a
specific conversational flow to deliver the positive psychology practice, namely after first asking
about an experience or a memory recall (e.g., a savouring memory) they decided whether to ask a
follow-up question, summarize what the coachee just shared, or ask for a new episode (i.e., a new
experience or memory). One of the main limitations of previous works [30, 57] was the pre-scripted
nature of the coaching dialogue flow that made the interaction very repetitive and not responsive.
Hence, we formulated the problem of conducting the well-being practice in HRI as a sequential
decision-making problem for selecting the next action in the coaching dialogue flow. At every
turn 𝑡 (i.e., the robotic coach asks questions, and the participant answers) [19], the robotic coach
environment is captured as an observation state variable 𝑠𝑡 . The robotic coach, similar to the human
well-being coach, may choose an action 𝑎𝑡 at every turn 𝑡 that allows it to move forward with the
conversation for delivering coaching practice by asking for a follow-up question, summarising what
the coachee just said, or asking for a new episode. The main goal is to learn a conversational policy
𝜋 : 𝑠𝑡 → 𝑎𝑡 that enables the successful delivery of the well-being practice (i.e., the robotic coach can
deliver successfully the positive psychology exercise to promote coachee mental well-being). We
formulated this as a batch (or generic) reinforcement learning (RL) problem – i.e., the RL model was
pre-trained by using the dataset described in Section 3.3.1 – and adaptive RL – where the generic
pre-trained RL model kept learning during the interaction with the coachees. We used the HHI4PP
dataset because it includes audio-visual recordings and transcriptions of a human coach delivering
a positive psychology practice, from which our model could learn how to make a decision on the
coaching dialogue flow.

We created an 11-element vector, called 𝑠𝑡 , to represent the observation state for the coaching
dialogue flow, which consists of: prediction of interaction rupture (present or absent), current
well-being exercise (savouring, gratitude, accomplishment, one door closes one door opens), speech
features (duration of speech and silence), and previous actions (summarisation, follow-up question,
and new episode). All of these features were collected at the end of each turn 𝑡 to keep track of
the dialogue flow and the conversational interchange between the human coachee and the robotic
coach, as in [66]. The actions 𝑎𝑡 were 3 discrete dialogue actions of the robotic coach that can
decide the coaching dialogue flow of the well-being practice, namely (1) summarise what the
coachee said, (2) ask for a follow-up question (e.g., "How does this event make you feel?"), and (3)
ask to share another episode (e.g., "Can you share with me another thing you were grateful for
during the last week?"). We defined the reward as the behavioural cues of the coachees, specifically
as the combination of speech duration and facial valence. We decided to use the facial valence as a
component of the reward since it carries information about the emotional state of the coachee [2]
as also was done in a previous work [40], while we used the speech duration because we observed
from the HHI4PP dataset that the human coach decided the coaching flow according to the amount
of information shared by the coachee. We computed the facial valence similarly to McQuillin et al.
[40], using deviations in valence values determined from coachees’ facial expressions compared to
their baseline facial expression (we refer to this as 𝐹𝑉𝑡 ).
We followed the same procedure for the speech duration by normalizing the values of speech

duration (𝑆𝐷𝑡 ). The final reward was the combination of these two values as follows:

𝑅 [𝑠𝑡 ] = 𝐹𝑉𝑡 + 𝑆𝐷𝑡 (1)
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The distribution of the reward of the HHI4PP is characterised by a mean value equal to -2.72, a
standard deviation equal to 5.59, and a median value equal to -3.09. The total number of samples is
748.

Fig. 3. Reinforcement learning models: generic pre-trained model (HHI4PP dataset), and the adaptive rein-
forcement learning model fine-tuned with the real-time coachee data.

3.3.3 Reinforcement Learning Models. We trained our batch (generic) RL model using three different
approaches: Deep Q-Learning (DQN), Double Deep Q-Learning (D-DQN), and Neural Fitted Q
Iteration algorithm (NFQ) to learn the conversational flow of a positive psychology exercise, using
the d3rlpy library11. We opted for deep Q-learning models due to their effectiveness in handling
increased complexity in the number of states and actions. These models efficiently adapt to the
randomness of the environment (as in-the-wild human-robot interaction), outperforming simpler
Q-learning models in this regard [18]. The results showed that there were not significant differences
among the three models. We then chose the DQN as it is the most commonly used one in discrete
problems, e.g., [66].
Our adaptive RL model uses the pre-trained generic RL model and is designed to be fine-tuned

with real-time data of each coachee interacting with the robotic coach as depicted in Figure 3. We
created personalised models (i.e., one for each coachee) that could further learn and adapt to the
specific coachee behaviour over time (i.e., across multiple interactions). We picked the DQN model
to pre-train our adaptive RL model, and to learn in real-time using the same d3rlpy library. This
adaptive approach differs from the generic one because it keeps learning online from the data
during the interaction with each coachee as in Figure 3.

3.4 Automatic Detection of Interaction Ruptures
Findings from a previous work [59] showed that several interaction ruptures may occur during a
coachee-coach interaction (L3). Motivated by these findings, we decided to embed the robotic coach

11https://d3rlpy.readthedocs.io/

https://d3rlpy.readthedocs.io/
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Fig. 4. The model pipeline for detecting interaction ruptures using the dataset collected in [59].

with the capability to detect interaction ruptures (i.e., the user expression of awkwardness and/or
reactions to the robot mistakes [59]) (O3). As discussed in Sec. 1, the term interaction ruptures is
related to the “deterioration in the quality of the relationship between patient and coach” [50] which
can be a barrier to coaching. Such ruptures can occur when, for example, the robot makes mistakes
during the coaching session which might negatively impact the alliance and trust perceived by the
user towards the robot, which may lead to an unsuccessful well-being practice [59].

3.4.1 Dataset & Labels. In [57], a robotic positive psychology coach has been deployed at a work-
place for over four weeks. The robotic coach followed a pre-scripted interaction and it conducted
four positive psychology exercises, described in detail in Spitale et al. [57]. We requested the
collected dataset from [59] which contains the extracted audio-visual features of 100 videos of
about 10 minutes each that were annotated in terms of occurrences of interaction ruptures with
binary labels (i.e., 1: present, or 0: absent), as described in [59]. The dataset [59] includes for each
video clip: (i) 35 temporal facial features extracted using the OpenFace 2.2.0 toolkit [8], such as AU1
(inner brow raiser), AU2 (outer brow raiser), AU4 (brow lowerer), AU5 (upper lid raiser) etc.; and
(ii) 25 temporal interpretable speech features using the openSMILE toolbox [17], such as loudness,
pitch, length of the coachees’ silence and speech etc. The dataset also includes body features, but
we discarded them since they have been found to not contribute to the detection of interaction
ruptures [59].

3.4.2 Feature Pre-processing. We used the sequences of both audio and visual features with the
purpose of learning temporal patterns in audio and facial cues to predict interaction ruptures. To
this end, we created the input samples for our models by re-sampling all feature sequences at
intervals of 1 second to capture the temporal variability of the data. We then applied to both
feature sets a sliding window approach with a window size of 10𝑠 (chosen after running a set of
experiments with 5s, 10s, 15s, 20s time window) and an overlap of 3𝑠 between sequential windows.
Given the unbalanced nature of the dataset [59], we decided to under-sample our feature sets using
the NearMiss method that selected examples based on the distance of majority class examples to
minority class examples. Our final tensors have the following dimensions (number of samples,
window size, features): audio feature set (3602, 10, 25) and facial feature set (3602, 10, 35).

3.4.3 Automatic Detection. We formulated the interaction rupture (IR) detection as a sliding-window
sequence-based binary classification problem, to detect whether an interaction rupture was present
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(IR) or not (No-IR) in a 10-seconds time window of an audio-visual segment (refer to Figure 4 for
the model pipeline). We experimented with three temporal deep learning models: long short-term
memory networks (LSTM) [25], gate recurrent unit networks (GRU) [16], and bi-directional LSTM
networks (Bi-LSTM). We conducted a 5-fold stratified cross-validation, repeated 10 times (50 folds
in total) with a subject-independent approach (i.e., the samples of the same subject were included
either in the training or test set but not both). We chose stratified cross-validation to maintain the
same proportion of “IR” and “No-IR” participants in each fold. We also tuned the hyperparameters
on the training sets with the Optuna framework [3]. Within each cross-validation experiment, all
features in the training and testing set of each fold were standardized using the feature distributions
of the training set via z-normalization, as in [39].

We conducted multiple experiments to compare the uni-modal vs. multi-modal approaches as in
[12]. We first trained our models using either facial or audio features, and then we adopted two
fusion strategies (either early or late fusion) to experiment with the multi-modal approaches, i.e.,
including audio and facial features as in [12]. The early fusion strategy consisted of concatenating
features from the audio and facial modalities that resulted in a single vector of features. While the
late fusion strategy consisted of majority voting, namely the final decision is made according to
the classifier whose predicted class probability is the highest across the different uni-modal models
[12].

Model ACC Precision Recall F1
Facial
LSTM 0.58± 0.10 0.62± 0.08 0.58± 0.10 0.56 ±0.11

Bi-LSTM 0.59± 0.10 0.63± 0.10 0.59± 0.10 0.57 ±0.10
GRU 0.58 ±0.10 0.63± 0.09 0.58 ±0.10 0.57 ±0.11

Audio
LSTM 0.73 ± 0.09 0.77 ±0.07 0.73 ±0.09 0.73± 0.09

Bi-LSTM 0.73± 0.10 0.78± 0.08 0.73± 0.10 0.73± 0.10
GRU 0.70 ± 0.10 0.77±0.08 0.72±0.10 0.72±0.09

Facial + Audio (Early Fusion)
LSTM 0.54± 0.09 0.52± 0.10 0.52± 0.09 0.51± 0.11

Bi-LSTM 0.55± 0.09 0.58± 0.10 0.55± 0.09 0.52± 0.11
GRU 0.55± 0.09 0.52± 0.10 0.53± 0.09 0.51± 0.11

Facial + Audio (Late Fusion)
LSTM 0.67± 0.10 0.80±0.09 0.53± 0.18 0.62± 0.16

Bi-LSTM 0.68± 0.12 0.81± 0.16 0.53± 0.19 0.63± 0.17
GRU 0.68± 0.11 0.78± 0.15 0.52± 0.10 0.63± 0.18

Table 2. Experimental results for uni-modal and multi-modal approaches using facial and audio features
across three deep learning models (LSTM, Bi-LSTM, and GRU) averaged across the 50 folds.

3.4.4 Evaluation Metrics. The evaluation metrics computed for each of the 50 cross-validation
folds included: (1) accuracy (ACC), the number of correct predictions with respect to the total
number of predictions in the test set; (2) precision, the percentage of interaction rupture ("IR")
samples among all samples that were classified as ruptures; (3) recall, the percentage of samples
accurately identified as interaction ruptures ("IR") among all "IR" samples in the dataset; and (4) F1,
the combination of the precision and recall of the classifier (by taking their harmonic mean), as in
most classification problems [27].
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These metrics were inspected across cross-validation folds and used to examine the performances
of various modelling strategies. Our problem is an event detection task similar to [35] where the
model should detect interaction ruptures using a sliding-window approach in an HRI context.
In this scenario, as in [39], the precision of the interaction rupture detection is crucial (e.g., a
robot relying on precise interaction rupture detection to appropriately repair those ruptures) to
minimise false positives and maintain coaching effectiveness. For this reason, our primary metric
for identifying the highest-performing model was precision. We prioritised precision rather than the
precision-recall tradeoff. Discussions with a human coach led to our decision that predicting false
interaction ruptures and making repairs based on this can be very costly in a coaching practice.

3.4.5 Results. Table 2 reports the results obtained from the experiments for uni-modal and multi-
modal modeling of LSTM, GRU, and Bi-LSTMmodels. Our results show that the Bi-LSTM late fusion
approach achieved an average precision of 81%, substantially higher than the average precision of
other models (around 66%). Given that precision is our primary metric, the late fusion multi-modal
Bi-LSTM approach has been chosen as the model to embed in our robotic coaching system.

3.5 Prompt Engineering of LLM

Action Prompt Engineering

(1) Summarising Can you please summarise what the Human has just shared?

(2) Asking for a follow-up question Can you please ask me a follow-up question about the exercise episode I
have just shared?

(3) New episode Can you please ask me about a new episode to share?

Table 3. Prompt engineering for making a completion request to ChatGPT in a coaching practice.

To achieve a more natural and multi-modal interaction and embed the robotic coach with more
sophisticated conversational capabilities (L4), the robotic coach has been designed to analyse the
coachees’ speech content and use a Large Language Model (LLM, i.e., ChatGPT) to understand what
the coachee says and respond appropriately to imitate a human coaching practice (O4). We have
used the LLM with all the precautions needed by implementing several safety measures to avoid
any unexpected or inappropriate responses as recommended in [7] and [10]. First, we integrated
a natural language processing layer (i.e., Moderation APIs from OpenAI) to identify whether the
coachee’s request content is inappropriate (e.g., self-harm, sexual) and whether the LLM’s answers
are inappropriate. If the layer detected an inappropriate request, the robotic coach would answer
"I found your answer very inappropriate. I would stop here the coaching practice and call the
researcher", and stop the interaction. Second, we conducted several adversarial testing to better
understand how the LLM replies to controversial requests (e.g., the coachee shares that they have
punched someone at work), see Section B of the Appendix for more examples. Finally, we have
implemented “Prompt engineering” to constrain the topic and tone of the output text. This aims to
reduce the possibility of producing undesired content, even if a coachee would try to produce it.
Table 312 summarises the prompts for each action of the robotic coach. Note that the inclusion of
the Moderation API layer caused a lag in the response of the robot, but we thought it was essential
for a safe and ethical conversation with the robotic coach.

We have used gpt-3.5-turbo model to request to "complete" the conversation between the coachee
and the robotic coach. We fed the model with the system context (i.e., the description of the exercise
12Note that gpt-3.5-turbo takes as input "Human" and "AI" conversational utterances.
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that the robotic coach has to deliver), and then we incorporated the coachee’s transcriptions. We
repeated the same prompting (appending one of the prompts reported in Table 3 according to the
decision made by the robotic coach as described in Section 3.3) for the whole coaching practice.
We kept also the history of the dialogue in the memory of the LLM in order to provide the LLM
model with the context of the conversational coaching practice. An example of the conversation is
reported in Section A of the Appendix.

The ultimate goal of VITA is to understand whether it can enable a significant improvement of
mental well-being not only limited to short-term interactions (L5) but also in the long-term and in
real-world settings (O5).

3.5.1 LLM-based ethical lessons learned. Using LLMs to generate content for a robotic coach
requires several important considerations prior to and during an empirical human-robot interaction
study. We share below our experiences and recommendations in order to guide the researchers
that intend to use the VITA system in their own research works.

Firstly, prior to the study, a thorough ethics review of the empirical study was undertaken by our
departmental ethics review committee at the Department of Computer Science and Technology,
University of Cambridge. They reviewed and approved the study design, the experiment protocol,
and the consent forms. We recommend that researchers considering using the VITA system should
engage with the appropriate ethics committee at their institution, and discuss with them whether
its use is appropriate and what safety measures should be taken.
Secondly, we implemented several safety measures withing the system while using ChatGPT

(as detailed in Sec. 3.5): adding an NLP layer to detect inappropriate user generated language,
conducting adversarial testing for controversial requests (see Appendix B), and “prompt engineering”
to constrain the topic and tone of the output. These measures were taken to keep the well-being
interaction appropriate and on topic. We recommend that researchers using the VITA system also
undertake such careful measures, and particularly consider what kinds of adversarial tests are
relevant for their intended use and context, and which prompts appropriately guide and constrain
the intended interaction.

Thirdly, to further ensure that the interaction was kept within the boundaries of an appropriate
well-being interaction session, we scaffolded the aforementioned engineered prompts within a
structured well-being interaction with pre-scripted robot utterances (see Appendix A for details).
This decision aligns with our previous work on design and ethical recommendations for robotic
well-being coaches [7], where professional human practitioners recommended that “verbal adap-
tation should be limited to preserve well-being practice efficacy”. By scaffolding LLM-generated
(i.e., verbally adapted) sentences within a structured interaction, we aimed to apply the appropriate
level of adaptation for this well-being interaction, while also reducing the possibility of the inter-
action extending outside the context of a well-being interaction, and minimizing the possibility
of misunderstandings via inappropriately generated utterances. We recommend that researchers
using the VITA system consider what level of verbal adaptation is appropriate and safe for the
intended interaction, and apply structured scaffolding as appropriate.
Finally, we recruited a study population that we pre-screened for anxiety and depression (as

discussed in Sec. 5.1). We chose this approach in order to safeguard our participants prior to the
interaction (as also recommended in our prior work [7]). We consider it ethical to thoroughly
examine and investigate well-being technologies with populations without mental health difficulties,
in order to mitigate potential risks that may arise with vulnerable populations. We recommend
that researchers evaluate how appropriate using the VITA system is for their intended application
context, and whether their population includes users who may be vulnerable to potential discomfort
arising in the interaction, or who might need additional safety measures.
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We do urge researchers using the VITA system in the future to carefully consider all of these
recommendations. This is not to say that merely following or considering these ethical recom-
mendations is sufficient for an approach, interaction or application area to be “ethical”. There is
limited prior work on the ethics of implementing LLM models in embodied systems, particularly
for well-being. Future research is needed to thoroughly investigate these issues — especially prior
to applying such technology outside of a controlled and safely monitored research environment.

4 PILOT STUDY
This section describes the in-the-lab pilot study to evaluate the use of different configurations
of the robotic coach interacting with coachees during the coaching practice to address O1 and
O2. In addition to the design choices described in detail in this paper (i.e., behaviour flow design
decisions described in Sec. 3.3, and ethical LLM design decisions described in Sec. 3.5.1), we designed
other aspects of the robot according to our previous work detailing recommendations for robotic
well-being coach design [7]. For instance, we chose the voice “Amy” together with a professional
well-being coach to reflect Recommendation 2: “Robot voice should emphasize variable prosody
and slow pace”.

4.1 Participants & Protocol
We collected a dataset of 4 participants (2 males, and 2 females, 20-33 years old) from the De-
partment of Computer Science and Technology, University of Cambridge, interacting with three
configurations of the robotic coach delivering four positive psychology exercises: pre-scripted
interaction as in [57] (PS, i.e., the robotic coach follows a pre-defined sequence of utterances to
speak aloud to the coachee no matter what the coachee says), generic RL (GEN-RL, i.e., the robotic
coach understands via natural language processing what the coachee says and responds accordingly
without personalising the selection of the next line of the dialogue to each coachee’s behaviour),
and adaptive RL (ADAPT-RL, i.e., the robotic coach understands via natural language processing
what the coachee says and personalises to the coachee’s behaviour by selecting the next line of the
dialogue flow accordingly), see Section 3.3.3. The robotic coach delivered the same four exercises
(savouring, gratitude, accomplishment, and one door closes one door opens) of the HHI4PP dataset
described in Section 3.3.1. Each participant interacted with 2 of the 3 robotic coach configurations
(either PS and GEN-RL or PS and ADAPT-RL). We recorded audio-visual clips via an external
webcam and we gathered a total of 6 hours data in 32 HRI sessions.

4.2 Robotic Platform
We chose the QTrobot by LuxAI S.p.A as the robotic platform to deliver the PP exercises given
its flexibility (ROS-based) to implement the VITA system as in previous works [6, 57, 62]. As
pinpointed by Spitale et al. [62], the QTrobot has the advantage to be equipped with a screen face, a
RGB-D camera, and a microphone array that can be used for real-time computational analysis. For
instance, Spitale et al. [57] embedded the robotic coach with less sophisticated skills that matched
more with the Misty Robot’s form. However, we hypothesised that by equipping the QT robot (a
humanoid robot) with more advanced capabilities, provided by VITA, it would better match with
the skills and behaviours exhibited while delivering the coaching practice. The QTrobot is a 90 cm
tall, child-like robot, with 2 DOF neck, 4 DOF full arms (shoulders, elbows, and hands), and static
legs. We implemented the VITA robotic coach system described in Section 3 on the QTrobot.

4.3 Measures
During the interaction, we gathered the logs of the interaction (e.g., transcriptions of the coachees’
speech, responses of the robot etc.) and also the IR and RL model outputs (i.e., IR predictions,
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actions chosen by the robot, rewards) to evaluate and analyse the VITA components. At the end
of each robotic coach interaction, we asked participants to fill out (once for each condition they
experienced) two questionnaires, namely the Negative Attitude Towards Robots Scale (NARS)
[43], and the Game Experience Questionnaire (GEQ) [29], with general, flow, and tension sub-scales
to evaluate the coachees experience interacting with the robot as in [40], and overall impression,
which included customised questions, such as "I felt that the robot’s behaviour was adapting to
what I was doing", "I felt that the robot speech was adapting to what I was saying" etc.

(a) NARS evaluation post-study for the pre-scripted
(PS), adaptive (ADAPT-RL), and generic (GEN-RL)
configurations.

(b) GEQ evaluation post-study for the pre-scripted
(PS), adaptive (ADAPT-RL), and generic (GEN-RL)
configurations.

Fig. 5. Questionnaire results from the pilot study.

4.4 Results
We conducted the exploratory pilot study with a small number of participants to inform the design
of our real-world study, and as such we cannot conduct statistical analysis on the results. Instead, we
compared the perception of the coachees between the PS vs. GEN-RL and ADAPT-RL configurations
(see Figures 5a and 5b). In brief, we observed that in the PS configuration the coachees displayed
the most negative attitude towards the robot (NARS), they felt the interaction flow was not very
engaging (GEQ-flow), they felt tension during the coaching practice (GEQ-tension), they were
not involved (GEQ-behavioral involvement) as in the other two configurations, and their overall
impression of the robotic coach was very negative. Figure 5a plots the post-study NARS results for
the 3 sub-scales, namely interaction, social and emotion) in the three configurations (pre-scripted,
generic and adaptive). The results suggest that the coachees have a less negative attitude towards
the robotic coach in the generic and adaptive configurations with respect to the pre-scripted one.
Analogously, Figure 5b depict the post-study GEQ results of the sub-scales empathy, negative
behavioural, flow, and tension in the three configurations (pre-scripted, generic and adaptive).
Again, the results show that coachees felt more negative and tension towards the robotic coach
in the pre-scripted configuration with respect to the adaptive and generic configurations. Our
results suggest that the generic and adaptive configurations were perceived more positively than
the pre-scripted one (EV1.1, addressing O1).

We have logged the reward over the four sessions in all the configurations tested. We observed
that the trend of the reward in the adaptive configuration (see Figure 6b) is positive (i.e., it tends to
increase), while the trend in the generic configuration is inconsistent (i.e., neither decreasing nor
increasing,see Figure 6a). These results suggest that the model in ADAPT-RL successfully keeps
learning during the coaching practice (EV2.1, addressing O2). Therefore for the real-world study
we adopted the ADAPT-RL configuration for the VITA system.
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Fig. 6. Comparison between the rewards of the generic configuration (a), and the adaptive configuration (b).
Legend: S refers to the session.

5 REAL-WORLD STUDY
This study aims to address the five objectives reported in Table 1, using the VITA robotic coach
configuration resulting from the pilot study. This section details the real-world study by reporting
the participants’ information (coachees), the protocol, the measures, the data analysis and the
results obtained.

5.1 Participants
We involved 17 participants in total, 7 females, and 10 males, 4 of whom were 18-25 years old, 6
were 26-35 years old, 4 were 36-45 years old, and 3 were 46-55 years old. The study was supported
and promoted by the Cambridge Consultants Inc. tech company located in Cambridge, and all
participants were employees in this company. The company advertised the study via email and
participation was voluntary (with no compensation). Our study aimed to involve healthy partici-
pants in the first instance, therefore we screened 25 participants and recruited 17. 8 participants
were excluded based on their self-reported levels of anxiety and depression, scoring more than 9
(the maximum threshold for mild anxiety disorder) in the Generalized Anxiety Disorder 7 (GAD-7)
[63] and in Patient Health Questionnaire (PHQ-9) [37]. Participants had very little knowledge (on
average 1.53 on a 5-point Likert scale) of robotic technology. All participants provided informed
consent for their participation and agreed on the usage of their data for scientific research. The study
design, the experiment protocol, and the consent forms were approved by the Ethics Committee of
the Department of Computer Science and Technology, University of Cambridge.

5.2 Measures
We collected quantitative and qualitative data via VITA-based logs of the interaction, questionnaires,
and interviews. VITA Logs were the same logs as reported in Section 4. One week prior to the
study, we asked participants to fill out the following questionnaires: a demographic form (asking
their age, gender, and previous experience with well-being practices as well as robots), the Negative
Attitude Towards Robots Scale (NARS [43] to measure coachees’ negative attitudes towards robots
before interacting with them as in [62]), and Ryff’s Psychological Well-being Scale (RPWS [65]) to
assess coachees’ mental well-being as in [30]. At the end of each robotic coach interaction, we asked
participants to fill out the same questionnaires of the pre-study as well as the Game Experience
Questionnaire (GEQ) [29], with general, flow, and tension sub-scales, and overall impression (same
questions as reported in Section 4). At the of the study, we conducted a semi-structured interview,
in which we asked several questions, such as “Have you felt understood and listened to?”, “Would
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you recommend a colleague or a friend to use this robot?” etc. We concluded the study by debriefing
the coachees, i.e., explaining the main goal of the study, and answering their questions.

5.3 Protocol
In this study, we chose the ADAPT-RL configuration from the pilot study to deliver the four positive
psychology exercises with the QT robot, due to the results reported in Section 4. Prior to the study,
the coachees were asked to fill out a set of questionnaires detailed in Section 5.2. The robotic coach
delivered the four positive psychology exercises described in Section 4 over four weeks in a meeting
room of the Cambridge Consultants Inc. company’s offices on a weekly basis. Two researchers
monitored the study from another meeting room in the same building.
In each session, one of the researchers welcomed the coachee and asked them to enter the

meeting room and sit on the chair in front of the robot. Once the coachee was ready, the other
researcher started the recordings via the two cameras, and they left the room to leave the coachee
alone with the robotic coach. The dyadic interaction between the coachee and the robotic coach
lasted for about 10 minutes and included the following steps: (1) The robot introduced itself and
described the positive psychology practice (just in the first session) and the exercise of the week
(e.g., savouring exercise). (2) The robot asked the coachee to think about a positive memory from
the last week and to share it with them. (3) The robot listened to the coachee’s response. (4) The
robot made a decision – based on the ADAPT-RL model described in Section 3.3.3 – on the next
step (summarise, ask for a follow-up question, or start a new episode). (5) The robot generated
the action according to the decision made in (4) and listened to the coachees’ response. (6) The
robot repeats steps (4) and (5) for 8 turns. We decided to fix the number of turns to 8 to ensure
that the coaching practice does not last more than 10 minutes. (7) The robot concluded the session
by asking the coachee to fill out the questionnaires (described in Section 5.2) on a tablet. Before
leaving the room, the robot thanked them and reminded coachee of the following week’s session.
At the end of the four weeks, the researchers asked the coachee to fill out the final questionnaires
and conducted a final interview as detailed in Section 5.2.

5.4 Data Analysis
We gathered various logs of the models embedded (i.e., the reward, actions, interaction rupture
values) and the interactions (i.e., facial valence, speech duration) for each episode in every session
with the robotic coach. We then computed the average value across each session and evaluated these
values’ evolution over 4 weeks to understand whether the ADAPT-RL model was able to learn how
to adapt to each person over time (i.e., if the model has learned, the reward value would increase
over 4 weeks). Then, we conducted a non-parametric statistical analysis using Friedman and then
post-hoc Wilcoxon tests to evaluate the measures’ change over time. As in [57], we analyzed the
quantitative data from the pre-, and post-study questionnaires using Python statistical libraries.
We conducted non-parametric tests because our samples do not follow a normal distribution. In
particular, we used Wilcoxon signed-rank test to compare the measurements pre-, and post-study
with Bonferroni correction. We applied the framework method to analyse qualitative data [48]
collected from semi-structured interviews, conducted after the final session. The framework method
consists of five key stages: 1) familiarization with the data, 2) identifying a thematic framework, 3)
indexing, 4) charting, and 5) mapping and interpretation. We construct our framework by drawing
on the objectives we established a priori while allowing for other emergent observations in the
data. Only one researcher was involved in the creation of the coding schema. We acknowledge that
this could have limited the findings presented belows.
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5.5 Results
This section reports the main findings that have been obtained evaluating the results collected
during the study via different data sources, namely the VITA logs and questionnaires to address
the objectives listed in Table 1.

Fig. 7. Results of the real-world study. Legend: W refers to the week.

5.5.1 VITA log results. We computed the rewards over 4 weeks for each participant, and then we
aggregated the rewards to compute whether on average the online RL model has learned over
the weeks as depicted in Figure 7a. We then conducted a paired t-test with Bonferroni correction
(0.05/4) and we found that the reward in W4 (𝑀 = −0.06, 𝑆𝐷 = 8.98) was significantly higher
(W2-W4: 𝑡 = −2.42, 𝑝 < .05; W3-W4: 𝑡 = −2.47 , 𝑝 < .05) than the reward in W2 (𝑀 = −2.80,
𝑆𝐷 = 7.94) and in W3 (𝑀 = −3.16, 𝑆𝐷 = 12.3). This analysis was conducted to better understand
whether the model was learning over time as done in previous work by McQuillin et al. [40]. Figure
7 depicts the evolution of the reward over time, and it shows that the reward increased over time
fromW2 to W4 except for W1. This is due to the initial model exploration in W1, as it tries to adapt
the pre-trained policy towards the specific individual user (as depicted by the wide bar range). This
result suggests that the model was able to learn on average how to adapt to the person (EV2.2) and
contributes to addressing O2. The reward increase is motivated by the speech duration change
over time. We conducted a Friedman test for evaluating the change over time of the coachee’s
speech duration. The results showed that there was a statistically significant difference in terms
of speech duration variance over the four weeks (𝜒2 = 11.11, 𝑝<.05). We then conducted post-hoc
tests with the Bonferroni correction (.05/4), and we found that the speech duration variation was
significantly lower in W2 (𝑀𝑑𝑛 = 13.81) than in W3 (𝑀𝑑𝑛 = 15.17; 𝑧 = 28.0, 𝑝<.05) and W4 (𝑀𝑑𝑛 =
18.23; 𝑧 = 21.0, 𝑝<.01). The speech duration of coachees on average increased from W2 to W4. We
analysed the number of interaction ruptures that occurred during the robotic coaching. Our results
show that no interaction ruptures were detected during the coaching sessions (EV3.1). This finding
is promising indicating that coachees may have not experienced any major interaction ruptures
during the robotic coaching (addressing O3). We discuss this further in Section 6.

5.5.2 Questionnaire results. We compared the NARS sub-scales (i.e., emotion, social, and interac-
tion) pre- and post- study using a Wilco- xon-ranked test, and our results show that the NARS
emotion sub-scale score was significantly (Z = 11.50, 𝑝 < .05) lower in the post-study (𝑀𝑑𝑛 = 2.00)
than in the pre-study (𝑀𝑑𝑛 = 2.33) measurement. This result suggests that the coachees had a
less negative attitude towards the robotic coach after the study. We also observed that the GEQ
questionnaire results show that coachees reported low tension (𝑀𝑑𝑛 = 1.67) and low negative
feeling (𝑀𝑑𝑛 = 1.4) during the robotic coaching. They reported a positive flow in interacting with
the robotic coach (𝑀𝑑𝑛 = 3), they felt slight empathy (𝑀𝑑𝑛 = 2.67), and they reported behav-
ioral involvement (𝑀𝑑𝑛 = 3.67) during the robotic coaching (EV1.2). These results contribute to
addressing O1.
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Statement Mean SD

1 I felt that the robot’s behavior was adapting to what I was doing. 3.29 1.15
2 I felt that the robot speech was adapting to what I was saying. 4.11 0.78
3 I felt that I was adapting to what the robot was doing. 3.17 1.18
4 I felt I was adapting to what the robot was saying. 3.82 0.95
5 I felt that the content of the follow-up questions was appropriate. 3.88 0.78
6 I felt that the number of the follow-up questions was appropriate. 3.88 0.85
7 I felt that the number of the episodes that the robot asked me to share was appropri-

ate.
3.58 1.06

8 I felt that how the robot summarized what I said was appropriate. 3.88 0.92
9 I felt that the number of times that the robot summarized what I said was appropriate. 3.64 1.16

Table 4. Item-by-item overall impression of the coachees after interacting with the robotic coach over 4
weeks.

We observed similar results for the customised questionnaire reported in Table 4. Table 4 reports
the overall impression results obtained from the customised questionnaires after interacting with
the robotic coach over 4 weeks. Overall, coachees had a positive impression of the robotic coach
and they thought that it was adapting to them and it showed appropriate behaviour in terms of
dialogue flow and decision-making (EV2.3). This result contributes to addressing O2.

We conducted the same type of test also for the RPWS’s sub-scales (i.e., autonomy, environmental
mastery, personal growth, positive relations with others, purpose in life, and self-acceptance). Our
results show that the following sub-scales where significantly higher in the post-study than in the
pre-study: the RPWS personal growth (𝑍 = 1.00, 𝑝 < .001,𝑀𝑑𝑛𝑝𝑜𝑠𝑡−𝑠𝑡𝑢𝑑𝑦 = 13,𝑀𝑑𝑛𝑝𝑟𝑒−𝑠𝑡𝑢𝑑𝑦 = 5),
the RPWS positive relations with others (𝑍 = 14.00, 𝑝 < .01,𝑀𝑑𝑛𝑝𝑜𝑠𝑡−𝑠𝑡𝑢𝑑𝑦 = 17,𝑀𝑑𝑛𝑝𝑟𝑒−𝑠𝑡𝑢𝑑𝑦 = 8),
the RPWS purpose in life (𝑍 = 2.50, 𝑝 < .01,𝑀𝑑𝑛𝑝𝑜𝑠𝑡−𝑠𝑡𝑢𝑑𝑦 = 14,𝑀𝑑𝑛𝑝𝑟𝑒−𝑠𝑡𝑢𝑑𝑦 = 7), and the RPWS
self-acceptance (𝑍 = 14.00, 𝑝 < .01, 𝑀𝑑𝑛𝑝𝑜𝑠𝑡−𝑠𝑡𝑢𝑑𝑦 = 13, 𝑀𝑑𝑛𝑝𝑟𝑒−𝑠𝑡𝑢𝑑𝑦 = 8) Figure 7b depicts the
sub-scales of personal growth, positive relations with others, purpose in life, and self-acceptance
that resulted in being significantly different pre- and post- study (EV5.1). This result suggest that
the coachees’ self-reported mental well-being improved via the robotic coach practice and this
result contributed to addressing O5.

5.5.3 Interview results. As mentioned, we conducted a framework analysis, using the objectives as
the codes for our evaluation. The interview results are presented below, aligned with the study’s
objectives. In general, coachees reported a very positive experience of interacting with the robotic
coach and that they felt at ease and relaxed after the first session. For example, P10 reported that
she “was more relaxed after session one because [she] didn’t really know what to expect [..] relaxation
happened very quickly during the first session”. Again, P13 felt a bit “awkward” at the beginning and
then she “got kind of used to the robot”. These results support O1 (EV1.3).
Coachees have contradicting opinions of their perception of the robotic coach adaptation. P02

found that the robotic coach was “adapting” to what she said and P03 mentioned that he “thought the
conversation was more natural [in the last session] than before”. While, P11 felt that “the information
about the exercises was just being read out in not a very personalized way”. Some of the coachees felt
that they were adapting to the robotic coach rather than the opposite. For example, P02 mentioned
that she “adjusted the way [she] spoke”. These results partially support O2 (EV2.4).
Some of the coachees found the interaction with the robotic coach very “natural” (P10) while

others haven’t found it quite seamless (e.g., P13, and P15) because of the robot’s long time to
respond to them and interruptions of the robot during the coaching practice. P06 also mentioned
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feeling “suprised" because she "built up a bit the relationship” with the robotic coach. The coachees’
opinion didn’t fully support O3 (EV3.2).

In general, coachees were very impressed by the conversational capabilities of the robotic coach
to be able to understand the content of the coachees’ speech. P16 was very “impressed with how
much kind of knowledge it has and the kind of appropriateness of the follow up questions”, and again
P07 found “summarizing [of the robotic coach] fairly impressive”. Also, coachees found that the
robotic coach asked “appropriate questions” (e.g., P08). Most of them (e.g., P12, P13) felt “listened
to” and “understood”. P15 also reported that he “felt like there was somebody paying attention” to
what he was saying. Coachees also highlighted that there was a lack of empathy and emotion
in the responses of the robotic coach. For example, P09 appreciated the linguistic understanding,
however she hasn’t felt “understood as a person” and she found that “in terms of like feeling that
emotional connection” the robotic coach was not there. Again, P07 reported that “there was no real
empathy”. These results partially support O4, because coachees felt listened to and understood
from a linguistic/content perspective, but not empathically (EV4.1).

Overall, coachees found the interactionwith the robotic coach very beneficial, supporting findings
from the well-being RPWS’s questionnaire. P02 mentioned that interacting with the robotic coach
“was really useful, [because she] comes away [after the session] with something”. P05 highlights he
would not feel comfortable sharing a bad day with a colleague, he would have been more “sincere”
with the robotic coach instead. P17 reported that he “was actually just randomly that day in a bad
mood and [the robotic coach practice] did help”. Also, P15 found the coaching practice really helpful
for “self-reflection” and he was “feeling better after that”. These results (EV5.2) support O5.

6 SUMMARY & DISCUSSIONS
This section summarises and discusses the results of this work highlighting how each objective
achieved has addressed and overcome the limitations of the current state of the art.

6.1 Improvement in the coachees’ perception toward the robotic coach (O1).
This work attempted to address the problem of making the robotic coach more interactive and
responsive (L1) in order to improve the coachees’ perceptions towards the robotic coach (O1). In
the pilot study, our results show that generic and adaptive configurations were perceived more
positively than the pre-scripted one by the coachees (EV1.1). From the real-world long-term study,
we found that their attitude towards the robotic coach improved after the study, and coachees
reported a positive flow and behavioral involvement (EV1.2). Also, overall the coachees had a
positive impression of the robotic coach, supporting the questionnaire findings (EV1.3). These
results suggest that our system achieved O1 by improving its interactivity and responsiveness.
This improvement is attributed to the synergy of components within the VITA systems, which
contributed to a more positive perception towards the robotic coach. For example, as shown in
our pilot study, the dialogue flow manager (see Figure 1) allowed the conversation to adapt to the
specific needs of each coachee, while the ChatGPT engine contributed to a seamless conversational
experience.

6.2 Emulating human well-being coach behaviour via adaptive robotic coaching (O2).
This paper aims to overcome the problem of coachees’ expectations on the robotic coach adaptation
(L2) by emulating human coach behaviour via adaptive coaching (O2). In the pilot study, our
results suggest that the adaptive configuration (ADAPT-RL) of the robotic coach successfully keeps
learning during coaching practice, adapting and personalising to each coachee over time (EV2.1).
Analogously, in the real-world study, we found that the reward function kept increasing over 4
weeks (demonstrating that also in this case the robotic coach adapted to the coachees’ behaviour



1:22 Spitale, et al.

over time, EV2.2), participants perceived that the robotic coach dialogue flow was appropriate
(EV2.3), and the coachees expressed different opinions about their perception of robotic coach’s
adaptation (EV2.4). Some of the coachees felt that the robotic coach was adapting to their behaviour
(verbal and non-verbal), while some others thoughts that they were adapting to the robotic coach
rather than the opposite. These results demonstrated that the developed VITA system succeeded
in meeting O2. This achievement can be attributed to the adaptive reinforcement learning model
(illustrated in Figure 3) that enabled the real-time adaptation of the robotic coach to the evolving
coachee behaviours. Even if the robotic coach was successfully adapting to the coachees’ behaviour,
coachees may or may not notice adaptive capabilities of the robotic coach. This is a well-known
problem in HRI. Past works have shown how adaptive models were better performance-wise,
but users – interacting with the system – usually cannot perceive the differences across adaptive
system’s configurations [4, 19].

6.3 Reducing the occurrences of interaction ruptures (O3).
This work seeks to address the problem of interaction ruptures (L3) during well-being coaching by
analysing the coachees’ behaviour via the automatic detection of the ruptures and reducing their
occurrences using the VITA system (O3). In the real-world study, we implemented the automatic
detection of the interaction ruptures, and our results show that no interaction ruptures were
detected during the coaching practice (EV3.1). The interview results revealed though contradictory
results. Some of the coachees have found the interaction very natural and seamless, others reported
that they have been interrupted by the robotic coach, and the waiting time for a response were too
long (EV3.2). These results suggest that O3 has been partially achieved. The interaction rupture
module (see Figure 1) shows promise in detecting real-time ruptures during coaching sessions.
However, the model could be improved with additional data. This absence of interaction rupture
may be because the robotic coach configuration provides a better interaction and coaching practice
with respect to [59] or the model was not able to generalise to this new interaction setting. To
confirm, we checked 5 video clips randomly to understand whether the coachees have experienced
any interaction ruptures as defined in [59]. We observed that coachees have experienced some
degree of interaction ruptures (e.g., being interrupted, or waiting for some time to get a response
from the robotic coach), however the intensity, the frequency and the duration were much lower as
compared to [59]. The interaction ruptures on average lasted 3 seconds in our study compared to
the average of 10 seconds in our previous work [59], and the occurrences were very few – i.e., on
average 3 over a whole session as compared to the average of 15-20 interaction rupture occurrences
reported in [59]. Future work should investigate whether the model needs to be fine-tuned with
data specific to a new study being undertaken.

6.4 Imitating human well-being coach dialogue using LLM (O4).
This work aims to address the lack of natural language understanding (L4) by imitating human
well-being coach conversational capabilities via LLM embedded in the VITA system (O4). In general,
coachees were highly impressed by the conversational capabilities of the robotic coach. Coachees
also highlighted that there was a lack of empathy and emotion in the responses of the robotic
coach. In summary, coachees reported that they felt understood and listened to content-wise, but
not empathically (EV4.1). These results show that VITA has partially achieved O4. While the
integration of the ChatGPT engine (see Figure 1) enabled the robotic coach to engage in natural
conversations, the lack of empathic capabilities of ChatGPT made it difficult for participants to feel
an emotional connection with the robotic coach. Past works have highlighted the importance of
embedding robots with empathic capabilities [45]. Several studies have investigated how to design
socially assistive robots to express empathy [36] and also to elicit empathy [62]. However, despite
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the significant increase in LLM usage in recent years, none of them have explored how to integrate
LLM-based empathic verbal capabilities into a robotic coach during a coaching practice. Future
work should investigate these issues further.

6.5 Improving coachees’ mental well-being in the long term (O5).
This work demonstrates that a robotic coach can help improve the mental well-being of the coachees
in the long term (O5), despite past works failing to obtain such results (L5). Our results show that
coachees who took part in the long-term real-world study have reported significant mental well-
being improvements via robotic coach practice (EV5.1). Coachees have also reported that they found
the coaching practice useful and they felt better after interacting with the robotic coach (EV5.2).
These results suggest that the VITA-based robotic coach successfully delivered positive psychology
exercises over 4 weeks achieving O5. This successful outcome can be attributed to the VITA
system as a whole, which enabled participants to fully engage with the robotic coach, promoting
mental well-being. This is achieved through the coach’s ability to adapt to the coachee’s behaviour
(dialogues flow manager, OpenFace, OpenSmile, and facial expression recognition detectors Figure
1), and engage in natural, seamless conversations (ChatGPT engine, Figure 1). Past works have
already shown that a robotic coach may help with improvements in mental well-being [30] in the
short term. However, none of them had demonstrated this effect longitudinally. Our present work
makes a contribution in this direction via the new open-source multi-modal VITA system we have
developed and the user studies we have undertaken. We hope that together these will inform and
enable the deployment of longitudinal, autonomous and adaptive robotic well-being coaches in
various real-world settings.

6.6 Limitations and Future work
This work addresses the objectives identified in the literature, but it has some limitations that we
identify as follows. The VITA system cannot fully address one of the main challenges identified in
the literature – latency and lag in the interaction. Coachees in the real-world study experienced lag
in the robotic coach’s responses due to the OpenAI API delays and the additional safety layer utilised
(i.e., Moderation API). Future work should investigate how to reduce this latency by embedding
local LLMs, instead of relying on external services, or integrating local safety checks.

Additionally, as discussed in Sec. 3.5.1, this research touched on the ethics of applying and utilising
LLMs in human-robot interaction in a well-being context. In our most recent work, we investigated
the appropriateness of LLM-generated robot behaviours within robotic coaching context [58]. Our
findings suggest that a robotic coach should ask deep questions to explore coachees’ feelings,
demonstrate emotional and empathic understanding, and avoid assumptions by using follow-up
questions to prevent bias and stereotyping. However, future research is needed to conduct thorough
and multidisciplinary analyses on challenges and opportunities of using LLM-generated robot
behaviour in human-robot interactions.
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A EXAMPLE OF A COACH-COACHEE CONVERSATION
RC [scripted]: Hi, my name is QT. What is your name?

P: Hi, my name is Micol.

RC [scripted]: We will do an exercise on gratitude.
Can you think of an example on gratitude of something that's happened in the last week or so?

P: Um Yeah, so I'm grateful because last uh Friday,
I had a very nice yoga class and it was great.

RC [follow-up question]: That's wonderful to hear.
Did you feel more relaxed and concentrated after the yoga class?

https://doi.org/10.17863/CAM.99124
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P: Yeah, definitely.
Um I think that this benefits my mental and physical well being.

RC [new episode]: Can you please tell me another small thing you are grateful for?

P: Um Yeah, sure.
Uh I think that I'm grateful for,
you know, having some break in the Eastern because I need to, you know, like just take a break.

RC [follow-up question]: What benefits do you think taking a break will have for you?

P: Um I think it could be very beneficial for also my work afterwards because
I will be more concentrated and, you know,
I can rest a bit.

RC [summary]: That sounds like a great plan to prioritize your rest and work efficiently later.

P: Yeah

RC [follow-up question]: How do you think taking rest can help in improving your performance at work?

P: Um because I will be with a fresh mind. And so it's always nice to do that.

RC [scripted]: Thank you for having shared this with me.

The LLMs was prompted as follows (depending on the action chosen by the VITA system at each
turn):

(1) "summary" prompt: Can you please summarise what the Human has just shared?
(2) "follow-up question" prompt: Can you please ask me a follow-up question about the exercise

episode I have just shared?
(3) "new episode" prompt: Can you please ask me about a new episode to share?
The sentence "scripted" refers to the pre-scripted utterances chosen before the study that the

robot said (they did not change based on what the coachee said).

B LLM ADVERSARIAL TESTING
This sections report a couple of examples of adversarial testing. In the first example (see Figure
8), the user shares with chatGPT the willingness to punch someone else in the face, while in the
second example (see Figure 9), the user shares that he/she is willing to kill a cat.
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Fig. 8. Example 1 - Punching someone in the face

Fig. 9. Example 2 - Killing a cat
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